Manipulation and (mis)trust in prediction markets

Financial Fraud, Misconduct and Market Manipulation Conference @ Lancaster September 13, 2024

Lawrence Choo¹, Todd R. Kaplan² and Ro'i Zultan³

¹Southwestern University of Finance and Economics

²University of Exeter and University of Haifa

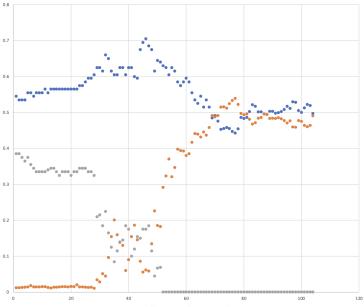
³Ben-Gurion University of the Negev

The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ▶ Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an *asset*.

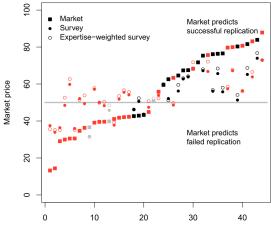
- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ▶ Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an *asset*.
 - Each asset pays a fixed amount only if that outcome occurs.


- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ▶ Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an asset.
 - Each asset pays a fixed amount only if that outcome occurs.
 - Asset price relative to the payout = market's predicted probability that the outcome it will occur.

- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ▶ Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an asset.
 - Each asset pays a fixed amount only if that outcome occurs.
 - Asset price relative to the payout = market's predicted probability that the outcome it will occur.
- Prediction markets are used to:
 - Forecast presidential elections and geopolitical event (e.g., Chen and Plott, 2002; Wolfers and Zitzewitz, 2004).

- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ▶ Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an asset.
 - Each asset pays a fixed amount only if that outcome occurs.
 - Asset price relative to the payout = market's predicted probability that the outcome it will occur.
- Prediction markets are used to:
 - Forecast presidential elections and geopolitical event (e.g., Chen and Plott, 2002; Wolfers and Zitzewitz, 2004).
 - Forecast climate-related events (CRUCIAL Lancaster)

- The efficient market hypothesis (e.g., Fama, 1970) states that market prices reflect the aggregate information existing in the market—also see Hayek (1954).
- ► Prediction markets flip this ⇒ design markets for the sole purpose of finding out information.
 - Each possible outcome is associated with an asset.
 - Each asset pays a fixed amount only if that outcome occurs.
 - Asset price relative to the payout = market's predicted probability that the outcome it will occur.
- Prediction markets are used to:
 - Forecast presidential elections and geopolitical event (e.g., Chen and Plott, 2002; Wolfers and Zitzewitz, 2004).
 - Forecast climate-related events (CRUCIAL Lancaster)
 - Used in organisation as forecasting tools (e.g., Chen and Plott, 2002; Gillen, Plott and Shum, 2017).


Presidential election 2024

Donald Trum p
 Kamala Harris
 Joe Biden

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Replication of psychology research (Dreber et. al, 2015).

Hypotheses, ordered by market price

(日)

э

- Black = Successful replication
- Red = Failed replication

Arrow et.al (2008) write:

"The ability of groups of people to make predictions is a potent research tool that should be freed of unnecessary government restrictions."

Arrow et.al (2008) write:

"The ability of groups of people to make predictions is a potent research tool that should be freed of unnecessary government restrictions."

Story so far...

Prediction markets are promising tools to guide policy or organisation decision making.

 \Rightarrow

Arrow et.al (2008) write:

"The ability of groups of people to make predictions is a potent research tool that should be freed of unnecessary government restrictions."

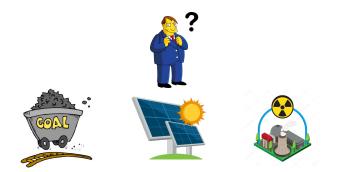
Story so far...

Prediction markets are promising tools to guide policy or organisation decision making.

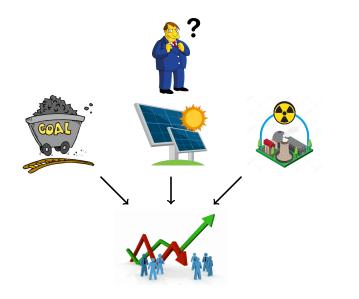
 \Rightarrow Less clear when traders also care about the outcome of the policy that market prices affect.

Arrow et.al (2008) write:

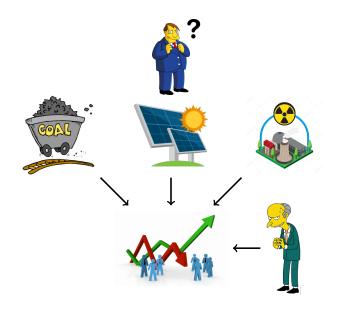
"The ability of groups of people to make predictions is a potent research tool that should be freed of unnecessary government restrictions."


Story so far...

Prediction markets are promising tools to guide policy or organisation decision making.


 \Rightarrow Less clear when traders also care about the outcome of the policy that market prices affect.

Our Objective:


Study how manipulators can affect information aggregation properties of market and influence policy makers' decisions.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A bet too far

Futures markets meet two formidable foes: terrorists and politicians

Jul 31st 2003

The Economist

PREDICTING terrorism is a devilishly hard business. So it is perhaps no surprise that America's government should cast about for unorthodox ways to guess when the bad auvs might strike next. One of the most eclectic routes that the Pentagon chose, creating an online futures market to enable punters to place bets on the odds, say, of a bioterrorism attack or the assassination of the king of Jordan, created a furore when Democratic senators got wind of it. The plan was cancelled on July 29th by the defence under-secretary, Paul Wolfowitz. (The

AP

Ne faites pas vos jeux, Mr Wolfowitz

< ≣⇒

Economist Intelligence Unit, a sister company of *The Economist*, supplied economic and political data to the plan's developer.)

Very hard to identify manipulation in the field!

- A political party explicitly asked supporters to manipulate a prediction market (Hansen, Schmidt, and Strobel, 2004).
- Camerer (1998) actively placed bets on horse races trying to manipulate the odds.

Very hard to identify manipulation in the field!

- A political party explicitly asked supporters to manipulate a prediction market (Hansen, Schmidt, and Strobel, 2004).
- Camerer (1998) actively placed bets on horse races trying to manipulate the odds.

 \Rightarrow Study manipulation in the laboratory!

Very hard to identify manipulation in the field!

- A political party explicitly asked supporters to manipulate a prediction market (Hansen, Schmidt, and Strobel, 2004).
- Camerer (1998) actively placed bets on horse races trying to manipulate the odds.

 \Rightarrow Study manipulation in the laboratory!

There are a few studies: Hanson, Oprea and Porter (2006) and Veiga and Vorsatz (2009,2010), Deck, Lin and Porten (2013)

▶ We use multiple asset markets à la Plott and Sunder (1988).
 ⇒ Information aggregation is efficient and robust.

- ▶ We use multiple asset markets à la Plott and Sunder (1988).
 ⇒ Information aggregation is efficient and robust.
- ▶ We allow for a status-quo in addition to three policies.
 - \Rightarrow Estimates policy makers' confidence in the market.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \Rightarrow Disentangles noise and successful manipulation.

- ▶ We use multiple asset markets à la Plott and Sunder (1988).
 ⇒ Information aggregation is efficient and robust.
- ▶ We allow for a status-quo in addition to three policies.
 - \Rightarrow Estimates policy makers' confidence in the market.
 - \Rightarrow Disentangles noise and successful manipulation.
- The policy decision affects all traders.
 - ⇒ Traders have explicit incentives to counter manipulation attempts.

- ▶ We use multiple asset markets à la Plott and Sunder (1988).
 ⇒ Information aggregation is efficient and robust.
- ▶ We allow for a status-quo in addition to three policies.
 - \Rightarrow Estimates policy makers' confidence in the market.
 - \Rightarrow Disentangles noise and successful manipulation.
- The policy decision affects all traders.
 - ⇒ Traders have explicit incentives to counter manipulation attempts.

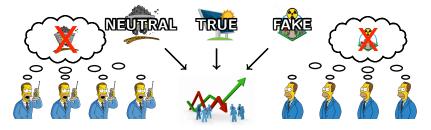
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 We manipulate common knowledge regarding the existence of manipulators.

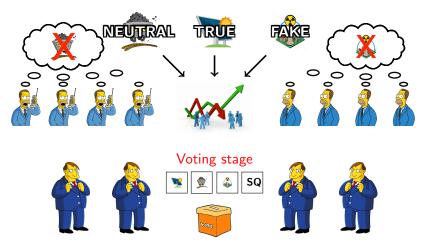
ヘロト ヘヨト ヘヨト ヘヨト

æ

Market stage

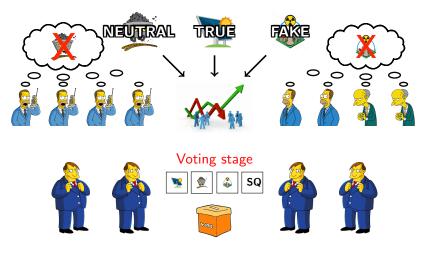

Market stage

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで



Market stage

・ロト ・日 ・ ・ ヨ ・ ・


Market stage

<ロト <回ト < 注ト < 注ト

э

Market stage

<ロト <回ト < 注ト < 注ト

э

Manipulators

Two traders in Group I are Red traders.

Manipulators

Two traders in Group I are Red traders. The other traders in Group I and all traders in Group II are Blue traders.

Two traders in Group I are Red traders.

The other traders in Group I and all traders in Group II are Blue traders.

(ロ)、(型)、(E)、(E)、 E) の(()

Blue traders. are always of Type-A.

Two traders in Group I are Red traders.

The other traders in Group I and all traders in Group II are Blue traders.

Blue traders. are always of Type-A.

The Red traders are equally likely to be Type-A or Type-B (manipulators), determined independently at the beginning of each

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

round.

Preferences over polices

Î	À				
Type-A traders, policy makers		Type-B traders			
Project	Payoff from project	Project	Payoff from proje		
SQ	100	SQ	100		
TRUE 📡	400	FAKE 🗳	1000		
Otherwise 🍣 👮	-400	Otherwise 😒 👮	-400		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Payoffs

Policy makers:

 $\pi = 650 + Payoff$ from project.

Traders:

 $\pi = 400 + Market \ cash + 10 \times Correct \ assets + Payoff \ from \ project.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Learning phase where all 12 traded (no voting or manipulators)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Learning phase where all 12 traded (no voting or manipulators)
- ▶ Learning: 1 Practice Round + 5 Playing rounds

- Learning phase where all 12 traded (no voting or manipulators)
- Learning: 1 Practice Round + 5 Playing rounds
- ▶ Main: 2 Practice Rounds + 14 market rounds.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Learning phase where all 12 traded (no voting or manipulators)
- Learning: 1 Practice Round + 5 Playing rounds
- ▶ Main: 2 Practice Rounds + 14 market rounds.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fixed groups and roles.

- Learning phase where all 12 traded (no voting or manipulators)
- Learning: 1 Practice Round + 5 Playing rounds
- ▶ Main: 2 Practice Rounds + 14 market rounds.
- Fixed groups and roles.
- Red traders are either Type-A (Not manipulators) or Type-B (Manipulators), within groups.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Learning phase where all 12 traded (no voting or manipulators)
- Learning: 1 Practice Round + 5 Playing rounds
- Main: 2 Practice Rounds + 14 market rounds.
- Fixed groups and roles.
- Red traders are either Type-A (Not manipulators) or Type-B (Manipulators), within groups.
- This is either common knowledge (CK) or private information (NCK), between groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• We had seven markets in each treatment.

Theory (static equilibrium)

Security prices		Implemented		
True	Fake	Neutral	policy	
5	2.5	2.5	True policy	
10	0	0	True policy	
5+	5+	0	Status quo	
	True 5 10	True Fake 5 2.5 10 0	True Fake Neutral 5 2.5 2.5 10 0 0	

An equal number of traders value the Fake and the Neutral assets at 0 and at 5.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theory (static equilibrium)

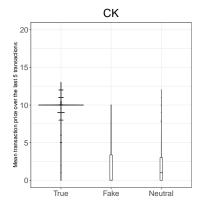
	Security prices		Implemented		
	True	Fake	Neutral	policy	
Equilibria					
Prior Information Equilibrium (PIE)	5	2.5	2.5	True policy	
Fully Revealing Equilibrium (FRE)	10	0	0	True policy	
Non-Revealing Equilibrium (NRE)	5+	5+	0	Status quo	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prices are fully revealing.

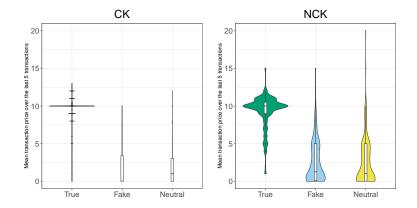
All traders value the True asset at 10 and the others at 0.

Theory (static equilibrium)


	Security prices		Implemented		
	True	Fake	Neutral	policy	
Equilibria					
Prior Information Equilibrium (PIE)	5	2.5	2.5	True policy	
Fully Revealing Equilibrium (FRE)	10	0	0	True policy	
Non-Revealing Equilibrium (NRE)	5+	5+	0	Status quo	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

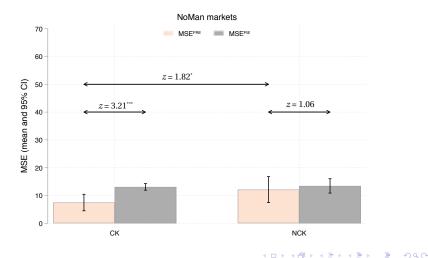
Manipulators mirror the behavior of the traders in their group.


RESULTS

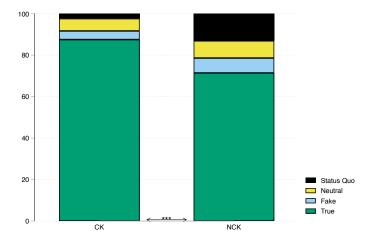
No manipulators: transaction prices

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

No manipulators: transaction prices



・ロト・4回ト・4回ト・4回ト・回・99(や)


Equilibrium predictions: no manipulators

Focus on transactions in the last five transaction of the market.

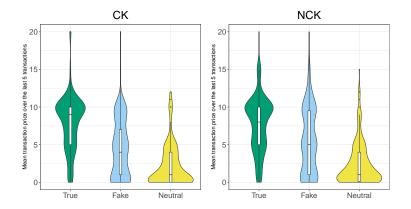
- ▶ *MSE^{PIE}*: mean square deviations of prices from the PIE.
- ▶ *MSE^{FRE}*: mean square deviations of prices from the FRE.

No manipulators: voting

・ロト・「四ト・「田下・「田下・(日下

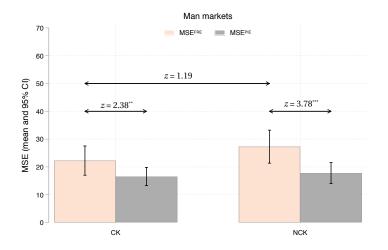
Result 1

If it is common knowledge that there are no manipulators in the market, Arrow-Debreu markets are successful at aggregating diverse and partial information about the true state into prices and facilitating optimal policy making.

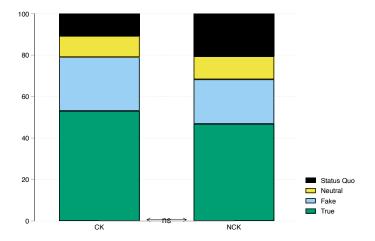

Result 1

If it is common knowledge that there are no manipulators in the market, Arrow-Debreu markets are successful at aggregating diverse and partial information about the true state into prices and facilitating optimal policy making.

Result 2


Mere suspicion of manipulation – even when there is none – impedes information aggregation and optimal policy making.

Manipulators: transaction prices



・ロト・西ト・西ト・西ト・日・ シック

Equilibrium predictions: manipulators

Manipulators: voting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Result 3

When traders are aware of manipulators in the market, Manipulators are able to severely impede information aggregation, though prices are still informative.

Result 3

When traders are aware of manipulators in the market, Manipulators are able to severely impede information aggregation, though prices are still informative.

Result 4

When the existence of manipulators is not common knowledge, prices do not significantly discriminate between the True and Fake states.

Result 3

When traders are aware of manipulators in the market, Manipulators are able to severely impede information aggregation, though prices are still informative.

Result 4

When the existence of manipulators is not common knowledge, prices do not significantly discriminate between the True and Fake states.

Result 5

When policy makers know that the market is free of manipulation, they trust the market, and are able to implement the True policy with high probability.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Result 5

When policy makers know that the market is free of manipulation, they trust the market, and are able to implement the True policy with high probability.

Result 6

Uncertainty regarding manipulation substantially impedes policy decisions - even when there are no manipulators in the market!

Result 5

When policy makers know that the market is free of manipulation, they trust the market, and are able to implement the True policy with high probability.

Result 6

Uncertainty regarding manipulation substantially impedes policy decisions - even when there are no manipulators in the market!

Result 7

Manipulators are successful in manipulating around 25% of the votes.

Do voters vote optimally?

We compare the possible payoff conditional on the voter being pivotal:

Based on actual votes.

Based on the following strategy: Vote for the policy associated with the highest observed price if the ratio of the second to the first price is less than α, and for the Status Quo otherwise. That is,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Do voters vote optimally?

We compare the possible payoff conditional on the voter being pivotal:

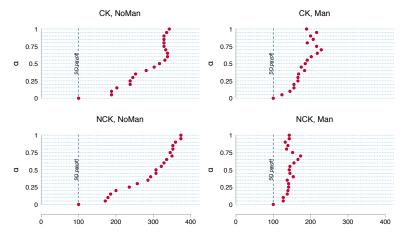
Based on actual votes.

Based on the following strategy: Vote for the policy associated with the highest observed price if the ratio of the second to the first price is less than α, and for the Status Quo otherwise. That is,

IF
$$\frac{P_2}{P_1} < \alpha$$
, THEN vote for 1 (market), OTHERWISE Status quo

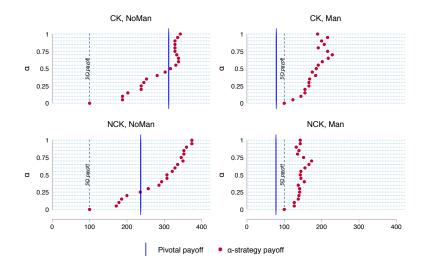
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Do voters vote optimally?

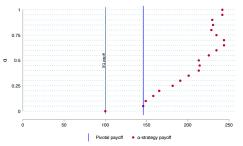

We compare the possible payoff conditional on the voter being pivotal:

Based on actual votes.

Based on the following strategy: Vote for the policy associated with the highest observed price if the ratio of the second to the first price is less than α, and for the Status Quo otherwise. That is,


IF
$$\frac{P_2}{P_1} < \alpha$$
, THEN vote for 1 (market), OTHERWISE Status quo

 \Rightarrow Note that $\alpha = 1$ implies always voting based on the highest price (unless tied), and $\alpha = 0$ implies always voting for the status quo.


α-strategy payoff

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

No Information

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Result 8

Without manipulators, policy makers should always gain from trusting the market. With full information, the 'actual' mean payoff is close to the payoff from always following the market. Without information, trust is substantially lower, and voting is suboptimal.

Result 8

Without manipulators, policy makers should always gain from trusting the market. With full information, the 'actual' mean payoff is close to the payoff from always following the market. Without information, trust is substantially lower, and voting is suboptimal.

Result 9

With manipulators, policy makers votes are suboptimal, and lead to worse outcomes than voting for the status quo.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Markets are efficient in aggregating diverse information.

Markets are efficient in aggregating diverse information.

However, the mere suspicion of manipulation is enough to inhibit price convergence and increase policy makers' uncertainty enough to substantially reduce the probability of implementing the optimal policy.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Markets are efficient in aggregating diverse information.

However, the mere suspicion of manipulation is enough to inhibit price convergence and increase policy makers' uncertainty enough to substantially reduce the probability of implementing the optimal policy.

Manipulator markets are unsuccessful in aggregating information into prices, especially when the majority traders do not know for certain that manipulators exist in the market.

Markets are efficient in aggregating diverse information.

However, the mere suspicion of manipulation is enough to inhibit price convergence and increase policy makers' uncertainty enough to substantially reduce the probability of implementing the optimal policy.

Manipulator markets are unsuccessful in aggregating information into prices, especially when the majority traders do not know for certain that manipulators exist in the market.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Nonetheless, it is still beneficial to follow the market.

Markets are efficient in aggregating diverse information.

However, the mere suspicion of manipulation is enough to inhibit price convergence and increase policy makers' uncertainty enough to substantially reduce the probability of implementing the optimal policy.

Manipulator markets are unsuccessful in aggregating information into prices, especially when the majority traders do not know for certain that manipulators exist in the market.

Nonetheless, it is still beneficial to follow the market.

Mistrust in markets susceptible to manipulation leads to bad policy decisions!

- Note the initial study was published in Management Science (2022). More work to do though.
- Recruit a new sample of participants who observe the market histories and guess whether there were manipulators in each market.

- Note the initial study was published in Management Science (2022). More work to do though.
- Recruit a new sample of participants who observe the market histories and guess whether there were manipulators in each market. Perhaps try with AI.

- Note the initial study was published in Management Science (2022). More work to do though.
- Recruit a new sample of participants who observe the market histories and guess whether there were manipulators in each market. Perhaps try with AI.
- Test whether an automated market maker is able to thwart manipulation.

- Note the initial study was published in Management Science (2022). More work to do though.
- Recruit a new sample of participants who observe the market histories and guess whether there were manipulators in each market. Perhaps try with AI.
- Test whether an automated market maker is able to thwart manipulation. We hope to be able to do this with CRUCIAL's software.

Thank you for your attention!

・ロト・(型ト・(型ト・(型ト))